
1. daisy:268 (Plakosh, Daniel)

Guard Pages
Daniel Plakosh, Software Engineering Institute [vita1]

Copyright © 2005 Pearson Education, Inc.

2005-09-27

Automatic allocation of additional inaccessible memory during memory allocation operations is a
technique for mitigating against exploitation of heap buffer overflows. These guard pages are unmapped
pages placed between all memory allocations of one page or larger. The guard page causes a
segmentation fault upon any access.

Development Context

Dynamic memory management

Technology Context

C++, C, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the
behavior of the program.

Risk

Standard C dynamic memory management functions such as malloc() , calloc(), realloc(), and
free() [ISO/IEC 99] are prone to programmer mistakes that can lead to vulnerabilities resulting from
buffer overflow in the heap, writing to already freed memory, and freeing the same memory multiple
times (e.g., double-free vulnerabilities).

Description

Automatic allocation of additional inaccessible memory during memory allocation operations is a
technique for mitigating against exploitation of heap buffer overflows. These guard pages are unmapped
pages placed between all allocations of memory that are the size of one page or larger. The guard page
causes a segmentation fault upon any access. As a result, any attempt by an attacker to overwrite
adjacent memory in the course of exploiting a buffer overflow causes the vulnerable program to
terminate rather than continue execution of the attacker-supplied code. Guard pages are implemented by
a number of systems and tools, including OpenBSD, Electric Fence, and Application Verifier (each of
which is discussed further in this content area).

Guard pages have a high degree of overhead because they fragment the kernel’s memory map and can
increase the amount of virtual space considerably. Their effectiveness depends on the size and pattern of
allocations; they are often more effective as a debugging facility than an operational security measure.

Guard Pages 1
ID: 301 | Version: 3 | Date: 4/4/06 2:15:52 PM

daisy:268

References

[ISO/IEC 99] ISO/IEC. ISO/IEC 9899 Second edition
1999-12-01 Programming Languages — C.
International Organization for Standardization,
1999.

Pearson Education, Inc. Copyright
This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006
by Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All
rights reserved. It is reprinted with permission and may not be further reproduced or distributed without
the prior written consent of Pearson Education, Inc.

Fields

Name Value

Copyright Holder Pearson Education

Fields

Name Value

is-content-area-overview false

Content Areas Knowledge/Coding Practices

SDLC Relevance Implementation

Workflow State Publishable

Guard Pages 2
ID: 301 | Version: 3 | Date: 4/4/06 2:15:52 PM

